Semiparametric GMM estimation of spatial autoregressive models

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved GMM estimation of the spatial autoregressive error model

We suggest an improved GMM estimator for the autoregressive parameter of a spatial autoregressive error model by taking into account that unobservable regression disturbances are different from observable regression residuals.

متن کامل

E¢ cient Estimation of the Semiparametric Spatial Autoregressive Model

E¢ cient semiparametric and parametric estimates are developed for a spatial autoregressive model, containing nonstochastic explanatory variables and innovations suspected to be non-normal. The main stress is on the case of distribution of unknown, nonparametric, form, where series nonparametric estimates of the score function are employed in adaptive estimates of parameters of interest. These ...

متن کامل

Efficient estimation of the semiparametric spatial autoregressive model

E¢ cient semiparametric and parametric estimates are developed for a spatial autoregressive model, containing nonstochastic explanatory variables and innovations suspected to be non-normal. The main stress is on the case of distribution of unknown, nonparametric, form, where series nonparametric estimates of the score function are employed in adaptive estimates of parameters of interest. These ...

متن کامل

Data-driven estimation of semiparametric fractional autoregressive models

In this paper data-driven algorithms for tting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparametric trend and maximum likelihood estimation of the parameters. For selecting the bandwidth, the proposal of Beran and Feng (1999) based on the iterative plug-in idea (Gasser et al., 1991) is used. Asymptotic properties of the proposed algor...

متن کامل

Efficient Estimation in a Semiparametric Autoregressive Model

This paper constructs eecient estimates of the parameter in the semi-parametric autoregression model X t = X t?1 + (X t?2) + t with a smooth function and independent and identically distributed innovations t with zero means and nite variances. This will be done under the assumptions that jj + lim sup jxj!1 j(x)j jxj < 1 and that the errors have a density with nite Fisher information for locatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Econometrics

سال: 2012

ISSN: 0304-4076

DOI: 10.1016/j.jeconom.2011.09.034